
Micromagnetics of shape anisotropy based permanent magnets

Simon Bancea, Johann Fischbachera, Thomas Schrefla, Inga Zinsb, Gotthard Riegerb, Caroline Cassignolb

aSt. Pölten University of Applied Sciences, Matthias Corvinus Str. 15, 3100 St. Pölten, Austria
bSiemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany

Abstract

In the search for rare-earth free permanent magnets, various ideas related to shape anisotropy are being pursued. In this work we
assess the limits of shape contributions to the reversal stability using micromagnetic simulations. In a first series of tests we altered
the aspect ratio of single phase prolate spheroids from 1 to 16. Starting with a sphere of radius 4.3 times the exchange length
Lex we kept the total magnetic volume constant as the aspect ratio was modified. For a ferromagnet with zero magnetocrystalline
anisotropy the maximum coercive field reached up to 0.5 times the magnetization Ms. Therefore, in materials with moderate
uniaxial magnetocrystalline anisotropy, the addition of shape anisotropy could even double the coercive field. Interestingly due to
non-uniform magnetization reversal there is no significant increase of the coercive field for an aspect ratio greater than 5. A similar
limit of the maximum aspect ratio was observed in cylinders. The coercive field depends on the wire diameter. By decreasing the
wire diameter from 8.7Lex to 2.2Lex the coercive field increased by 40%. In the cylinders nucleation of a reversed domain starts at
the corners at the end. Smoothing the edges can improve the coercive field by about 10%.

In further simulations we compacted soft magnetic cylinders into a bulk-like arrangement. Misalignment and magnetostatic
interactions cause a spread of 0.1Ms in the switching fields of the rods. Comparing the volume averaged hysteresis loops computed
for isolated rods and the hysteresis loop computed for interacting rods, we conclude that magnetostatic interactions reduce the
coercive field by up to 20%.
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1. Introduction

Rare earth permanent magnets exhibit the highest maximum
energy product (B · H)max of all known magnetic materials; a
combination of high magnetic moment and high coercivity [1].
For efficient electrical generators and motors this is crucial; the
permanent magnets that are contained in either the rotor or sta-
tor must provide as strong magnetic fields as possible, with-
out themselves being demagnetized. Recently much of the re-
search into permanent magnets has focussed on reducing their
dependence on rare earth elements. A number of approaches
to finding new permanent magnets are being pursued, includ-
ing new hard magnetic compounds and nanostructuring, where
a soft phase contributes large magnetization and a hard phase
contributes high coercivity [2, 3, 4].

In this paper we assess the limits of shape anisotropy effects
on the improvement of coercivity in magnets made of a single
soft magnetic phase. The coercive field of an ideal magnetic
particle is dependent on size and shape, with various modes of
reversal such as coherent rotation, curling and nucleation [5].
At small sizes, where internal magnetization is homogeneous,
reversal proceeds by coherent rotation and is described by

Hc =
2K1

µ0Ms
+

Ms

2
(1 − 3N) (1)
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where K1 is the uniaxial magnetocrystalline anisotropy con-
stant, µ0 is the vaccuum permeability, MS is the saturation mag-
netization and N is the demagnetizing factor parallel with the c
axis. The coercive field is dependent on the angle θ between
the field and the c axis of the sample, so that an angle-adjusted
coercive field H∗c is given by [6]

H∗c =
Hc

(cos2/3θ + sin2/3θ)3/2
. (2)

For a prolate spheroid (also known as an “ellipsoid of rota-
tion”), which has equal dimensions along two axes, the demag-
netizing factors can be calculated following the work of Osborn
[7].

Previous work [8, 9, 10] showed that, above a certain length,
the reversal of columnar grains was no longer dependent on
grain length but on the nucleation of a reversal volume. The
nucleation field then depends on the diameter only, where be-
low a certain diameter related to the reversal volume size the
nucleation field increases as an inverse function of diameter.
This is a consequence of the spatial confinement of the reversal
volume and the increased exchange energy contribution when
forming a domain wall.

2. Method

The finite element method is used to numerically solve the
Landau-Lifschitz-Gilbert (LLG) equation. At each time step we
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apply a hybrid finite element/boundary element method to com-
pute the magnetic scalar potential [11]. Finite element models
are created with tetrahedral volume elements and triangular sur-
face elements. Prolate spheroids are prepared by defining inner
axes a in the x − y plane and b along z, with b ≥ a defining the
long axis (Fig. 2b). The dimensions are modified to change the
aspect ratio, keeping the total volume V = 4

3πa
2b constant at

1824L3
ex, which corresponds to a sphere with a = b = 4.35Lex

and an aspect ratio of 1.0. Lex is the exchange length of the
material. In order to assess the effects of shape alone we reduce
the magnetocrystalline anisotropy to zero.

Single phase rods are modelled as regular cylinders with di-
ameter D and length L. For comparison, rounded rods are cre-
ated where the total length remains the same but both ends
are rounded spherically. For these rods a moderate magneto-
crystalline anisotropy is used. Reversal loops are calculated by
applying a slowly-increasing external field opposing the initial
magnetization, where the ramp speed is much slower than the
Larmor precession, so that dynamic effects may be safely ig-
nored [12]. A small field angle of 2◦ is used. The nucleation
field Hnuc is defined as the field strength required to reduce Mz
to 0.9Ms. The coercive field Hc is defined as the field required
to reduce Mz to zero. For all simulations the c axis is oriented
parallel to the cartesian z axis, except for particle ensembles
where the c axis follows the rotation of the geometry, staying
with the shape-defined long axis.

3. Results & Discussion
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Figure 1: (a) Computed reversal curves for prolate spheroids with zero mag-
netocrystalline anisotropy and varying aspect ratio between 1.0 and 15.6. (b)
Schematic of the spheroid geometry, with a being the radius in the xy plane and
b along the long z axis. (c) The respective nucleation fields for different aspect
ratios, with the theoretical plot for coherent reversal.

Numerically calculated hysteresis loops for prolate spheroids
with identical volumes but aspect ratios ranging from 1.0 up to
15.6 are presented in Fig. 1a. The theoretical values of Hc
are calculated with Eq. (1) and adjusted for the 2◦ field angle
with Eq. (2). The curling mode of reversal is not considered,
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Figure 2: Visualizations of the computed magnetization data during reversal
of soft prolate spheroids for aspect ratios (a) 1.95 and (b) 15.6, showing the
different reversal modes.

and images of the changing magnetization configurations dur-
ing reversal for aspect ratios of 1.95 (Fig. 2a) and 15.6 (Fig.
2b) show that curling is not present in this size regime.

Hnuc approaches zero for an aspect ratio of 1.0, which corre-
sponds to the theoretical coherent mode anisotropy field HA =

2K/Ms = 0, where for spheres with N = 1
3 [13]. For larger as-

pect ratios reversal begins with nucleation of a reversal domain
at the ends of the wire, followed by domain wall propagation
until the whole wire is switched. The value of Hnuc converges
at a value of b/a = 5, consistent with previous investigations
[8, 9, 10]. For an aspect ratio of 15.6 the nucleation field is
0.42Ms.

The simulation results match closely with the theoretical
model, even at large aspect ratios where reversal begins by nu-
cleation. This is consistent with the idea of nucleation of a re-
versal volume at the ends of the sample, since the reversal vol-
ume forms through localized rotation from the fully saturated
sample (Fig. 2b), therefore the Stoner-Wohlfarth model re-
mains valid for predicting the nucleation fields. This kind of be-
haviour has been observed before in the switching of patterned
elements in recording media, where non-unform switching is
observed but the switching field follows the Stoner-Wohlfarh
angle dependence [14].

Similar results are presented for cylindrical and rounded rods
(Fig.3), where for a discrete set of rod diameters D the length
L is modified. The nucleation field Hnuc is plotted as a func-
tion of L/D, where each symbol represents a different diam-
eter D. Hnuc values reach a plateau when the aspect ratio is
greater than 5. In this regime switching occurs by nucleation
of a reversed domain and wall motion and the nucleation field
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increases with decreasing D. For each D, the coercive field at
the plateau is higher for rounded rods. The smoothness of the
ends reduces surface charges and the resulting lower magneto-
static energy stabilises against nucleation. This difference be-
comes larger as the rod diameter increases, since for smaller
diameters the stiffness caused by the exchange interaction lim-
its the inhomogeneity of the magnetization at the sample edges.
For aspect ratios smaller than 2 we approach the coherent ro-
tation or curling regime. For the rounded ends with an aspect
ratio L/D = 1.0 (a sphere), Hnuc = 0.33Ms for all D, which
corresponds to the theoretical Stoner-Wohlfarth prediction for
a small sphere of HA = 0.37Ms (when adjusted for the small
field angle) [13]. The cylindrical wire with aspect ratio 1.0
has a slightly higher nucleation field, due to the higher shape
anisotropy contribution along the parallel axis for cylindrical
geometries with respect to spheres [15, 16]. In this case all of
the rounded particles are below the theoretical coherence radius
for a sphere Rsphere

coh = 5.099Lex, and all but the largest cylinder
are below the cylindrical coherence radius Rcylinder

coh = 3.655Lex,
meaning that reversal is coherent [17]. For larger diameters we
expect the nucleation field to reduce, as curling becomes more
significant [5].
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Figure 3: Computed nucleation fields for cylindrical (black markers) and
rounded (red markers) rods of varying diameter D, as a function of wire as-
pect ratio L/D.

Exchange-decoupled particle ensembles were created by
packing thirty eight of the rounded rods with dimensions D =
8.7Lex and L = 87.1Lex into a bounding box of size 65.3×65.3×
217.7 L3

ex, using the open-source YADE framework (Fig.4b)
[18]. Using this method we were able to achieve volume pack-
ing densities of between 0.20 and 0.29. With this variation, a
spread in the coercive field calculated from the hysteresis loops
of around 0.1Ms was found. This corresponds to a change of up
to 30% and can be attributed to the angular dependence of coer-
civity as well as the changing distances, orientations and over-
lap between the individual rods and the accompanying magne-
tostatic interactions.

In order to seperate the effect of magnetostatic interactions
on the reversal of rod esembles we perform the following ex-

periment: Fig. 4 compares two computed reversals of the same
rod arrangement, with and without magnetostatic interactions.
The rods have an average tilt angle of 21.8◦ and using the same
arrangement in both cases excludes the influence of angular dis-
tribution. First, the full model is simulated at once to include
the magnetostatic interactions between the rods. Second, the re-
versal curves for individual rods are computed separately, then
the combined volume-average reversal curve is calculated. Ex-
change interactions are not included in order to isolate the in-
fluence of magnetostatic interactions. The full model reversal
exhibits a 0.08Ms reduction in coercivity; a 20% reduction due
to magnetostatic interactions alone.

We expect that using a larger number of rods would better re-
produce the behaviour of bulk magnets and smooth the features
of the reversal curve, however in this study finite element model
sizes were limited to around 38 rods by the available computing
resources.
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Figure 4: The computed reversal curve for the full model rod arrangement
shows a 20% reduction in coercivity compared to the isolated volume-averaged
results, due to magnetostatic interactions. Inset: visualization of the packed
rods model.

4. Conclusions

By changing the shape of soft magnetic particles from
spheres to long wires we were able to increase the nucleation
field by a factor of 15. Above an aspect ratio of five any
improvements plateau. The maximum coercive field reaches
0.65Ms for an aspect ratio of 10 and a diameter of the cylin-
der of D = 2.2Lex. Similar results were obtained for cylin-
drical rods, where smoothing the ends was found to improve
the coercivity by reducing surface charges. Compacted rod ar-
rangements show a variation in coercivity of around 30% since
different packing arrangements result in different angular distri-
butions and different amounts of magnetostatic interaction be-
tween the rods. Magnetostatic interactions between the rods
were shown to reduce coercivity by around 20%.
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