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Finite element micromagnetic simulations are used to compute the temperature-dependent hysteresis properties of Nd2Fe14B 

permanent magnets in order to assess the influence of a hard (Dy,Nd)2Fe14B shell. The simulations show that the 4 nm thick 

shell cancels out the reduction in coercivity from an outer defect layer, which is known to exist at the grain boundaries in 

NdFeB permanent magnets. Activation volumes are computed and shown to depend on the structure’s configuration as well as 

the temperature.  

 

I. INTRODUCTION 

          Permanent magnets are key components in many important modern technologies, for example in direct-drive wind 

power generators and the motors in electric and hybrid vehicles [1].  A large percentage of modern high performance permanent 

magnets are based on Nd2Fe14B. In many applications these magnets are used at elevated temperatures, for example the 

operating temperature of the motors inside hybrid vehicles is around 450 K. At increased temperatures the effects of thermal 

activation on the reversal process are increased, reducing the coercivity, so some of the neodymium (Nd) is replaced by heavy 

rare earth elements such as dysprosium (Dy). (Dy,Nd)2Fe14B has a higher intrinsic anisotropy field so magnets containing Dy 

have a larger coercive field when compared to Nd2Fe14B magnets. (Dy,Nd)2Fe14B- containing magnets may be prepared either 

by adding Dy to the main phase during the alloying step or by adding Dy in a way that the (Dy,Nd)2Fe14B forms only near the 

grain boundaries, creating a hard shell-like layer. Possible routes for the latter process are the adding of Dy2O3 as a sintering 

element [2], [3] or by grain boundary diffusion [4]. This follows recent trends in the fabrication of nanostructured permanent 

magnets where hard magnetic phases with high intrinsic coercivity are being coupled to softer magnetic phases that exhibit 

high intrinsic magnetization in order to create magnetic materials with high values of energy product (BH)max [5]–[8].  

Recent advances in fabrication, characterization and simulation have emphasized the importance of surface defects with 

reduced anisotropy to the measured coercivity of rare earth permanent magnets [9]–[11]. It is possible that the grain boundary 

diffusion process could be optimized to produce a shell with an ideal ratio of Dy to Nd and an ideal shell thickness so that the 

coercivity is enhanced without too much reduction in remanence, leading to the desired high values of energy product (BH)max.  
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In this work finite element micromagnetic simulations are used to calculate the thermally-activated extrinsic properties of 

NdFeB grains containing Dy-diffused hard shells in order to measure the influence of the thermal reduction in coercivity, the 

reduction in coercivity from a soft outer defect layer and the hardening from the Dy.  

 

II. METHOD 

In the present work finite element micromagnetic simulations [12], [13] are applied to compute the temperature-dependent 

hysteresis properties of single-grain Nd2Fe14B permanent magnets, considering the influence of a soft outer defect and a hard 

shell.  

A. Model 

Dodecahedral grain models, approximating the polyhedral geometries of grains observed in actual rare earth permanent 

magnets, are prepared in three varieties: (i) a pure Nd2Fe14B grain with no defect and no shell, (ii) a Nd2Fe14B core with a soft 

outer defect of 2 nm thickness and (iii) a Nd2Fe14B core with a hard (Dy,Nd)2Fe14B shell of 4 nm and an outer defect (2nm). 

The outer grain diameter is constant at 50 nm (Figure 1).  

 
 

FIG. 1.  Schematics of the three dodecahedral single grain models: (i) pure Nd2Fe14B, (ii) Nd2Fe14B core with a soft 2 nm thick outer defect 

layer, (iii) Nd2Fe14B core, 4 nm thick super-hard Dy-diffused layer and a 2 nm thick soft defect.  

 

An adaptive mesh size is used in consideration of the critical lengths of the material, as suggested by Rave and co-workers 

(Figure 2)  [14].  The theoretical exchange length of a ferromagnet is defined analytically as 𝐿𝑑 = √𝐴 𝐾⁄   where A is the 

exchange constant and K is the uniaxial magneto-crystalline anisotropy constant. At the outer corners of the model a mesh size 

of half the exchange length is assigned. At the outer edges a size corresponding to the domain wall width of 𝛿 = 𝜋𝐿𝑑 is assigned. 

The mesh edge length grows in size towards the center of the grain up to a maximum value of 5𝐿𝑑. The temperature-dependent 

material constants used in the simulations are given in Table I.  
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FIG. 2.  Visualizations of the generated grain models showing (a) the surface mesh elements and (b) the inner volume elements. Additional 

shell layers were included to allow flexible reuse of the model, but were not used for the simulations contained within this article.  

 

TABLE I. Intrinsic material properties used for the simulations. All values for Nd2Fe14B from ref. [15]. Values of K and Js for 

(Dy47,Nd53)2Fe14B from ref. [16]. Values of A for (Dy47,Nd53)2Fe14B from ref. [17].  

Material T [K] K [MJ/m3] Js [T] A [pJ/m] 

Nd2Fe14B 300 4.30 1.613 7.70 

Nd2Fe14B 450 2.90 1.285 4.89 

(Dy47,Nd53)2Fe14B 300 5.17 1.151 8.70 

(Dy47,Nd53)2Fe14B 450 2.70 0.990 6.44 

 

B. Simulation 

The magnetization is interpolated piecewise linearly on a tetrahedral computational grid. The demagnetizing field 𝐻𝑑 = −∆𝑈 

is computed from a magnetic scalar potential, U. In order to apply the boundary condition U = 0 at infinity, the finite element 

mesh is extended outside the magnetic particle. The parallelepipedic shell transformation [17] is applied in order to map the 

exterior mesh to the infinite exterior region.  The demagnetization curve is computed by minimizing the micromagnetic energy 

for decreasing external field H with a field step of μ0ΔH = 0.01 T. At each field the Landau-Lifshitz equation is integrated with 

infinite damping [18] using a semi-implicit midpoint-scheme [19] and a modified Barzilai-Borwein step length selection [20]. 

This algorithm [12] resembles a gradient descent method for energy minimization. With thermal activation the system can hop 

over a finite energy barrier which leads to a reduction in the switching field. Taking  the  intermediate  magnetization  

configurations  during  reversal  as  an  initial  guess  the  modified string  method [21] is used to find the minimum energy 

path and its associated energy barrier ΔE between the initial and  reversed states. This is repeated as a function of applied field 

and the resulting energy barriers are fitted to an effective energy barrier function [22] 

 ∆𝐸 = ∆𝐸0(1 − 𝐻 𝐻𝑐,𝑠𝑡𝑎𝑡𝑖𝑐⁄ )𝑛 (1) 
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using ΔE0 and n as fitting parameters where ΔE0 is the energy barrier for zero applied field, n is an unknown exponent and 

Hc,static is the coercive field calculated from the static demagnetizing curve. This allows an approximation of the thermally-

activated coercive field, which is the field corresponding to an energy barrier of 25kBT [23]. The so-called phenomenological 

activation volume of reversal [26] can be approximated from the gradient at 25kBT  by Equation (2). 

 
𝑣 = −

1

𝜇0𝑀s

𝑑𝐸

𝑑𝐻
 

(2) 

III. RESULTS & DISCUSSION 

Figure 3 contains visualizations of the reversal process in the three models at 300 K. The reversal processes at 450 K are 

visually identical, albeit with slightly larger reversal domains. The theoretical anisotropy field 𝜇0𝐻A = 2𝐾1/𝑀𝑠 equals 6.70 T 

for the pure Nd2Fe14B grain at 300 K and 5.67 T at 450 K. The reduction in the calculated values can be attributed to the 

dodecahedral shape, which introduces a non-zero demagnetizing factor and edge effects, reducing the coercive field relative to 

HA, which is based on a sphere.  Reversal begins at an edge or corner of the grain, where locally non-uniform demagnetizing 

fields induce a perturbation in the magnetization.  

 

FIG. 3.  Reversal processes in the single grain models with (i) a pure NdFeB grain, (ii) a NdFeB grain with a soft outer defect and (iii) 

NdFeB core, (Dy, Nd)FeB shell and an outer soft defect. Thermally-activated coercive field values are indicated with the field direction 

(red arrows). The saddle point image is the configuration with the highest total energy, forming the peak of the energy barrier.  
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Figures 4 and 5 contain the results of fitting the Energy barrier heights as a function of applied field to Equation (1) for T 

= 300 K and T = 450 K, respectively. The intersection of these fit lines by the ∆𝐸 = 25 kB𝑇 line gives the estimated coercive 

field values for thermally-activated reversal. These thermally-activated coercive field values are given alongside the results of 

the static simulations in Table II. For the soft defect layer the material properties of the neighboring phase are used with the 

uniaxial anisotropy constant K adjusted to zero. In all three models, at T = 300K the thermal activation reduces the coercivity 

by around 15%, while at 450 K the reduction is around 25%.  

 

FIG. 4.  Data and associated fits to Equation (1) of the energy barriers as a function of applied field strength at T = 300 K for (i) a single 

grain of Nd2Fe14B, (ii) a Nd2Fe14B grain with a soft surface defect and (iii) a Nd2Fe14B grain with a (Dy47,Nd53)2Fe14B shell and an outer 

surface defect. The dashed line indicates the 25 kBT energy barrier height corresponding to thermally-activated coercivity.  

 

 

FIG. 5.  Data and associated fits to Equation (1) of the energy barriers as a function of applied field strength at T = 450 K for (i) a single 

grain of Nd2Fe14B, (ii) a Nd2Fe14B grain with a soft surface defect and (iii) a Nd2Fe14B grain with a (Dy47,Nd53)2Fe14B shell and an outer 

surface defect. The dashed line indicates the 25 kBT energy barrier height corresponding to thermally-activated coercivity.  
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At both temperatures the reduction in coercivity from the soft defect in (ii) is canceled out by the hard shell in (iii).  At 300 

K the thermally-activated coercive field for both (i) and (iii) are 4.97 T, whereas with a defect and no shell it is 3.23 T.  At 450 

K the equivalent values are (i) 2.62 T, (ii) 1.80 T and (iii) 2.78 T.  

TABLE II. Results: static and thermally-activated coercivities and the reduction percentage caused by thermal activation for each model and 

both temperatures.  

Model T [K] Static µ0Hc [T] Thermal µ0Hc [T] Reduction % 

(i) 300 5.89 4.97 15.6 

(i) 450 3.58 2.62 27.0 

(ii) 300 3.84 3.23 15.8 

(ii) 450 2.44 1.80 26.4 

(iii) 300 5.81 4.97 14.5 

(iii) 450 3.60 2.78 22.9 

 

 

The activation volumes for all three models and both temperatures are calculated using the gradient of each fit at 25 kBT and 

given in Table III. Activation volumes are greater in size at the higher temperature. The inclusion of the soft outer defect in 

model (ii) increases the phenomenological activation volume to around double the size in model (i) since the activation 

volume is proportional to the change in magnetization, which is larger when the reversal domain is located inside a soft 

magnetic phase. Likewise, the inclusion of the hard shell in model (iii) reduces the activation volume size back down by 

around one third.  

 

 

TABLE III. Activation volumes of models (i), (ii) and (iii) measured at T = 300 K and T = 450 K using the gradient method of Gaunt & Roy 

[26].  

Model T [K] v [nm3] 

(i) 300 148.0 

(i) 450 267.3 

(ii) 300 249.7 

(ii) 450 530.8 

(iii) 300 176.1 

(iii) 450 365.0 

 

IV. CONCLUSIONS 

     A (Dy47,Nd53)2Fe14B shell of 4 nm cancels out the reduction of coercivity from 2 nm thick soft surface defects. In addition 

to the decrease of the anisotropy field with temperature, thermal fluctuations cause a reduction of the coercive field. At T  =  

300K  thermal  activation reduces the coercivity by 15%, while at 450 K the reduction is around 25%. The soft surface defect 

doubles the size of the activation volume, whereas the hard (Dy47,Nd53)2Fe14B shell reduces it by around one third.   
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