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Abstract: Exchange spring permanent magnets may be a route towards high energy product perma-
nent magnets with low rare-earth content. In composite magnets soft magnetic phases act as nuclea-
tion sites for magnetization reversal. We use micromagnetic simulations in order to understand the 
role of the size and shape of the soft inclusions on the magnetization reversal. We compare the switch-
ing field of magnetically soft spheroids, cuboids and cylinders embedded in a hard magnetic matrix. 
Whereas there is only little difference in the switching field for enclosed spherical or cubical soft 
shapes, prolate inclusions enhance the stability of the magnet. 

Keywords: two phase nanocomposite magnets, micromagnetics simulations 

Address: Johann Fischbacher, Industrial Simulation, St. Poelten University of Applied Sciences, Mat-
thias Corvinus-Strasse 15, 3100 St. Poelten, Austria, Tel: +43 2742 313 228 – 638, Fax: +43 2742 313 
228 – 609, E-mail: johann.fischbacher@fhstp.ac.at 

Introduction 

Micromagnetics is a continuum theory that 
describes magnetization processes on a length 
scale ranging from about a nanometer to mi-
crometers. Using the finite element method in 
order to discretize the micromagnetic equations 
we can compute the coercive field of a perma-
nent magnet depending on its physical and 
chemical structure. Especially simple geomet-
rical models are useful, in order to understand 
and quantify the different factors that determine 
the coercive field of a composite magnet. The 
theory of exchange spring permanent magnets 
was discussed by Kneller [1], Skomski [2], and 
Schrefl [3]. Skomski and co-workers [4] com-
pared the nucleation field of different hard-soft 
geometries. Spheres were reported to show a 
higher nucleation field as compared to cylinders 
or layered structures. In this work we apply 
numerical micromagnetics, in order to evaluate 
hard-soft shapes and their influence on magnet-
ization reversal. In particular we are interested 
in the effect of shape and size of a single soft 
inclusion in a hard magnetic matrix. The influ-
ence of magnetostatic interactions between 
several soft inclusions in a hard matrix is dis-
cussed in [5]. 

Method 

We use a finite element micromagnetic soft-
ware for the solution of the Landau-Lifshitz 
Gilbert equation [6]. First the external field He 
is kept zero for 10 ns, in order to obtain a rema-
nent magnetic state. Then He is applied at a rate 
of -80 mT/ns up to -8 T. The field is applied at 
an angle of 0.5 degrees with respect to the easy 

axis of the hard magnetic material. The Gilbert 
damping constant is one. We use a soft phase 
(-Fe) with a magnetic polarization Js = 2.15 T 
and an exchange constant A = 21 pJ/m. As 
magnetically hard phase we use Nd2Fe14B with 
uniaxial anisotropy constant K1 = 4.9 MJ/m³, 
Js = 1.61 T and A = 8 pJ/m. A single -Fe sphe-
roid, cuboid or cylinder is embedded into a 
Nd2Fe14B spherical or ellipsoidal shell. The 
demagnetizing field of a uniformly magnetized 
sphere or ellipsoid is uniform. Therefore we 
avoid any reduction of the coercive field by 
strong demagnetizing fields near corners or 
edges of the macroscopic sample [7]. Still the 
macroscopic demagnetizing field of the shell 
creates an additional field that acts on the soft 
inclusions. Thus when comparing the switching 
field of different soft shapes we add the macro-
scopic demagnetizing field -NM of the sample 
to correct the loop. N is the demagnetizing fac-
tor of the macroscopic shape and M the magnet-
ization. We define the switching field, Hsw, as 
the critical field when the hard phase switches 
irreversibly. For fair comparison, the volume of 
the differently shaped inclusions is kept the 
same and placed inside the same shell. For 
samples varying in size the volume ratio be-
tween -Fe and Nd2Fe14B is kept constant. 

Results 

We start with investigating the influence of the 
particle shape on the magnetization of an isolat-
ed Nd2Fe14B particle. Fig. 1 shows that the non-
uniform demagnetizing fields reduce the coer-
cive field of a cube with respect to the coercive 
field of a sphere. But embedded into a hard 
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magnetic matrix, soft spheres and soft cubes 
with equal volume, Vs, yield almost the same 
switching field. Increasing the share of mag-
netically hard material increases the switching 
field only for small inclusions with an edge 
length or diameter less than 10 nm to 12 nm, 
respectively (Fig. 2). Even for a small 4x4x4 
nm³ inclusion, Hsw is reduced by 2 T compared 
to Hsw of a pure Nd2Fe14B sphere. 

In order to study the influence of reduced ex-
change coupling between the magnetically hard 
matrix and the soft magnetic inclusion, we in-
troduce a 1 nm thick interlayer. The volume of 
the shell plus interlayer is seven times the vol-
ume of the soft body, Vs. The material constants 
of the interlayer are adjusted according to 
Ai = fAhard, Js,i = Js,hard(Ai/Ahard)1/2, and 
K1,i = K1,hard(Js,i/Js,hard)3, whereby the subscript 
‘hard’ refers to the Nd2Fe14B constants. Fig. 3 
shows the soft phase reversal field (open mark-
ers) and the hard phase switching field (filled 
markers). Here we define the soft phase reversal 
field as the critical field at which the magnetic 
polarization reaches 0.9Js.  

With full coupling (square markers) we observe 

the transition from a one-step magnetization 
reversal for small inclusions (Vs < 10x10x10 
nm³) to a two-step reversal for larger embed-
dings. The difference between the soft phase 
reversal field and the hard phase switching field 
is less than 0.6 T shrinking with the size of the 
soft body. With reduced exchange coupling the 
switching fields of the two phases are clearly 
distinct. The difference in Hsw increases to 
about 1.5 T when the coupling is reduced by 
f = 0.5. For f = 0.01 the soft phase reversal field 
approaches for the macroscopic demagnetizing 
field NM whereas the hard phase reverses at 
switching fields between 5 T and 7.2 T depend-
ing on the size of the inclusion. The shape of 
the inclusion has only little influence on the 
reversal of the soft phase. But samples with a 
spherical inclusion show a more stable hard 
phase when coupling is reduced.  

In [8] it has been reported that the nucleation 
field can be enhanced significantly by trans-
forming a soft magnetic sphere to an elongated 
shape such as a cylinder or a prolate spheroid 
but Hc plateaus for aspect ratios larger than 5. 
Fig. 4 shows the switching field for such prolate 
soft inclusions inside a Nd2Fe14B prolate sphe-
roid. The shell’s minor axis is twice the inclu-
sion diameter. The major axis is adjusted to fit 
the elongated inclusions keeping the ratio of 

Fig. 1. Switching field of Nd2Fe14B cubes and
spheres with volume V. 

Fig. 2. Switching field of -Fe cubes (solid line)
and spheres (dashed line) with equal volume Vs

in a Nd2Fe14B spherical shell. r denotes the
ratio of hard to soft magnetic volume. 

Fig. 3. -Fe cubes (solid line) and spheres
(dashed line) enclosed by a 1 nm interlayer in a
Nd2Fe14B spherical matrix. The interlayer ex-
change constant Ai=fAhard is reduced to decou-
ple inclusion and shell. Open markers refer to
the soft phase reversal field and filled markers
to the hard phase switching field. 
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magnetically hard to soft material at 4:1. We 
compare two orientations. In the upper figure of 
Fig. 4 we choose the long axis of the soft inclu-
sion to be perpendicular to the easy axis of the 
hard material and the applied external field. We 
refer to this orientation with ‘x’. The figure 
below deals with a configuration with the long 
axis parallel to the easy axis and external field 
(‘z’). In general, an ellipsoidal shaped inclusion 
stabilizes the magnet better than a cylinder or 
cuboid. With raising diameter the differences 
diminish. Unlike the single phase results, elon-
gating the soft magnetic inclusions still de-
creases the switching field but it plateaus again 

for higher aspect ratios. For small diameters, an 
inclusion aligned parallel to the easy axis re-
sults in a more stable magnet than a configura-
tion with an inclusion perpendicular to the easy 
axis.  The difference in the switching field is 
0.6 T shrinking with lower aspect ratios lcyl/d. 
However, for diameters larger than 10 nm a soft 
phase in ‘x’-orientation results in a 0.2-0.5 T 
higher switching field. If we compare Hsw of 
similar inclusion volumes in Figures 2 and 4 we 
notice significantly higher switching fields for 
prolate inclusions than for cubes or spheres. 
(Cylinder: d = 10 nm, lcyl = 100 nm; cube 
20x20x20 nm³). 

Conclusions 

For small soft magnetic inclusions within a hard 
magnetic matrix, the shape of the soft inclu-
sions was found to contribute to the coercive 
field with prolate spheroids showing the highest 
switching field. If lateral extension of the soft 
inclusion was greater than 10 nm the shape 
effect was suppressed. For elongated soft inclu-
sions such as cylinders or prolate spheroids it is 
preferable to align them parallel to the easy axis 
if the diameter is smaller than 10 nm. For wider 
soft inclusions an orientation perpendicular to 
the easy axis leads to better stability. 
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Fig. 4. Switching field of prolate -Fe inclu-
sions in an ellipsoidal hard magnetic shell. The
volume of the soft phase is equal to the volume
of a cylinder with diameter d and length lcyl.
The diameter d is common for all three embed-
dings but the length is adjusted to comply with
the volume constraint. The volume ratio of shell
to inclusion is 4:1. ‘x’ and ‘z’ in the axes labels
refer to an orientation of the inclusions’ long
axis perpendicular or parallel to the easy axis
of the hard phase, respectively. 


