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Abstract

One approach to construct powerful permanent
magnets while using less rare-earth elements is to
combine a hard magnetic material having a high
coercive field with a soft magnetic material hav-
ing a high saturation magnetization at the nanome-
ter scale and create so-called nanocomposite mag-
nets. If both materials are strongly coupled ex-
change forces will form a stable magnet. We use
finite element micromagnetics simulations to inves-
tigate the changing hysteresis properties for vary-
ing arrays of soft magnetic spherical inclusions in a
hard magnetic body. We show that the anisotropy
arising from dipolar interactions between soft mag-
netic particles in a hard magnetic matrix can en-
hance the nucleation field by more than 10 % and
strongly depends on the arrangement of the inclu-
sions.

1 Introduction

Most high performance magnets today are based on
rare-earth elements like neodymium or dysprosium.
These are both expensive and in short supply. One
approach to construct even more powerful perma-
nent magnets while using less rare-earth elements
is to combine two different magnetic alloys at the
nanometer scale and create so-called nanocompos-
ite or exchange spring magnets. The idea behind
this is to combine a hard magnetic material having
a high coercive field with a soft magnetic material
having a high saturation magnetization. If the co-
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ercive field of a magnet is high enough, its energy
density product is proportional to the magnetiza-
tion squared. If both materials of a nanocomposite
magnet are strongly coupled, exchange forces will
form a stable magnet with energy products as high
as 1 MJ/m3, with low rare-earth content [1, 2].

The enhancement of the remanence and the en-
ergy density product is generally achieved at the ex-
pense of the coercivity. But exchange interactions
between soft and hard magnetic phases preserve a
high coercivity if the size of the magnetically soft
region is smaller than twice the domain wall width
of the hard magnetic phase [3].

To obtain a significant enhancement of the energy
density product it is necessary to include a large
amount of soft phase within the hard magnetic ma-
trix. But if the distance between neighboring soft
inclusions becomes too small, i.e. the thickness of
the hard region is less than the domain wall width
δ, the soft regions interact and the nucleation field
is reduced significantly. The nucleation field is in-
dependent of the shape of the soft region as long as
its size is small enough [2]. Skomski and Coey [2]
showed that the nucleation field of nanocomposite
structures is given by 2〈K〉/(µ0〈M〉), where 〈K〉 is
the volume averaged anisotropy constant and 〈M〉
is the volume averaged magnetization. Thus the
nucleation field decreases with increasing volume
fraction of soft magnetic phases.

But high-magnetization materials can be used to
create shape anisotropy. Therefore nanoscale mag-
netostatic self-interactions may increase the energy
product while the volume fraction of the magnetic
phase decreases. This effect is exploited in alnico
magnets consisting of FeCo needles in an AlNi ma-
trix [4]. Skomski et al. [4] found a maximum energy
product (BH)max = µ0M

2
r /12 for such magnets

where Mr is the remanence and the volume frac-
tion of the hard phase f = 2/3. In this work we
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will look at the optimal arrangement of soft nano-
spheres embedded in a hard magnetic matrix. Sim-
ilar to the shape anisotropy of needles, the dipolar
interactions between nano-spheres may increase the
coercive field.

Hadjipanayis and co-workers [1] proposed to
build exchange spring permanent magnets with a
bottom-up approach from nano-sized magnetic par-
ticles. After compaction a hard magnetic matrix
with soft magnetic inclusions will be formed. Since
the soft particles have a higher magnetization than
the hard magnetic matrix, dipolar interactions be-
tween the soft inclusions will influence the magnetic
behavior. It is well known that magnetic anisotro-
py can arise from magnetic dipoles arranged in a
lattice [5, 6]. The magnetic field outside a magne-
tized sphere is similar to a magnetic dipole field.
In a theoretical model of a nanocomposite magnet,
we can assume that the soft inclusions are spheres.
Thus dipolar interactions may lead to an additional
effective anisotropy that can enhance the coercive
field.

In this work we investigate the effect of dipolar
interaction between the soft inclusions in nanocom-
posite permanent magnets. We assume soft mag-
netic spheres that are distributed in a hard mag-
netic matrix phase and use finite element mi-
cromagnetics simulations to compute the coercive
fields for different arrangements of the spheres
within the hard matrix. The results show, that
dipolar interactions between the soft inclusions can
stabilize the magnet. Remarkably, it is possible to
enhance the coercive field although the volume frac-
tion of the soft magnetic phase is increased.

2 Method

We use finite element micromagnetics to compute
the magnetization reversal of our models. Micro-
magnetism is a continuum theory describing mag-
netization processes on a characteristic length scale
of a few nanometers. We solve the Gilbert equation
given by

∂ ~M

∂t
= −|γ| ~M × ~Heff +

α

Ms

~M × ∂ ~M

∂t
(1)

~Heff = ~HE + ~HA + ~HM + ~Hext (2)

for a time varying external field. Details of the nu-
merical implementation are given in [7]. First the
external field is kept zero for 10 ns, in order ob-
tain the remanent magnetic state. Then the exter-
nal field, µ0Hext is decreased to −6 T with a slope

Figure 1: Small Fe65Co35 spheres placed inside a
Nd2Fe14B body.

of −0.12 T/ns. In order to introduce a symmetry
breaking, the field is applied at an angle of 0.5 de-
grees with respect to the easy direction of the hard
magnetic phase. The Gilbert damping constant α
is one. Equation (1) describes the motion of the
magnetization ~M in the effective field ~Heff. It is
the sum of the exchange field ~HE, the anisotropy
field ~HA, the magnetostatic or dipolar field ~HM,
and the applied external field ~Hext.

We use Nd2Fe14B with uniaxial anisotropy con-
stant K1 = 4.9 × 106 J/m3, magnetic polariza-
tion Js = 1.61 T and exchange constant A =
7.7× 10−12 J/m. For the simulations we assume a
weak uniaxial anisotropy in the soft magnetic phase
of K1 = 4.0× 104 J/m3, a magnetic polarization of
Js = 2.43 T (Fe65Co35) and exchange constant of
A = 2.6 × 10−11 J/m. The anisotropy axes of the
soft and the hard magnetic phases are parallel.

We place an array of soft magnetic spheres ori-
ented along the x-axis or z-axis as shown in Fig. 1
in a hard magnetic matrix (Nd2Fe14B) and apply
an external field in z-direction with the easy axis
of the magnetic materials in the same direction as
the external field. The hard magnetic matrix has
the form of a sphere. Thus we can avoid any effects
of the macroscopic shape. Furthermore the macro-
scopic demagnetizing field is uniform for a sphere.
Simulations of which the results are compared with
each other are done with a constant diameter dshell
of the Nd2Fe14B matrix phase. In general dshell
is held as small as possible to keep the number of
finite elements low.

3 Results

In a first set of simulations we investigate the in-
fluence of the size of the soft magnetic inclusions
on the reversal process. We place three small soft
magnetic spheres inside a hard magnetic shell. In
one case the inclusions are arranged along the x-
axis, in the second they are arranged along the z-
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Figure 2: Magnetic reversal of three soft magnetic
spheres with dincl = 4, 8, 12 nm in a hard magnetic
matrix of constant diameter dshell = 48 nm. The
labels X and Z refer to the arrangement of the inclu-
sions along the x-axis or z-axis, respectively. The
external field µ0H is applied in z-direction. The
easy axis of the magnetic materials is parallel to
the z-direction.

axis. In both cases an external field Hext = µ0H
is applied in z-direction. The diameter dincl of the
Fe65Co35 spheres is incremented from 4 nm up to
14 nm with a gap of 1 nm inbetween them. The di-
ameter dshell of the Nd2Fe14B shell is 48 nm. Any
difference in the nucleation field between the ver-
tical arrangement of the soft spheres and the hor-
izontal arrangement of the soft spheres has to be
attributed to dipolar interactions between the soft
inclusions. Fig. 2 shows the resulting hysteresis
curves and Table 1 the differences in the nucle-
ation fields. The effect due to dipolar interaction
is strongest for inclusions with dincl = 8 nm. We
observe a 8.4 % higher nucleation field when the
soft magnetic spheres are aligned parallel to the di-
rection of the applied external field as compared to
the case when the soft magnetic spheres are aligned
perpendicular to Hext. For diameters dincl = 4 nm
and dincl = 14 nm the effect vanishes which is due
to the very strong or the very weak exchange hard-
ening of the soft phase, respectively. For proper ex-
change hardening the size of the inclusions should
not be more than twice the domain wall width of
Nd2Fe14B given by δ = π

√
A/K1 ≈ 3.94 nm, where

K1 is the uniaxial anisotropy constant and A is
the exchange constant [3]. Note that with grow-
ing amount of Fe65Co35 in the system the coercive
field diminishes.

In a second set of computations we investigate
the effect of a shrinking gap between the soft mag-
netic inclusions. We place three soft magnetic

Table 1: Nucleation fields for a system of three soft
magnetic spherical inclusions in a hard magnetic
matrix of diameter dshell = 48 nm. The size of
the inclusions is changed from dincl = 4, . . . , 14 nm.
The labels X and Z reference to the alignment of the
inclusions along the x-axis or z-axis, respectively.
The external field µ0H is applied in z-direction. We
assume µ0Hnuc when the normalized magnetization
reaches 0.8.

dincl µ0H
x
nuc[T] µ0H

z
nuc[T] µ0Hz

nuc−µ0Hx
nuc

µ0Hx
nuc

4 nm -6.3706 -6.3798 0.14 %
6 nm -4.7569 -5.0048 5.21 %
8 nm -3.6396 -3.9454 8.40 %

10 nm -2.9795 -3.1799 6.72 %
12 nm -2.5424 -2.6399 3.83 %
14 nm -2.2297 -2.2419 0.55 %

spheres with dincl = 8 nm in a hard magnetic body
with dshell = 42 nm, again arranged along the x-
axis in one case and along the z-axis in the second
one. Hext is applied in z-direction. The gap be-
tween the soft magnetic inclusions is varied from
0.5 nm to 5 nm. The coercive field is reduced with
shrinking gap as predicted in [2]. But the effect
due to dipolar interactions is getting larger when
the gap is getting smaller as shown in Table 2.
While we notice a difference of just 3.46 % between
µ0H

z
nuc and µ0H

x
nuc when the distance between the

inclusions is 5 nm, this difference rises to 10 % for a
gap of 0.5 nm. µ0H

z
nuc and µ0H

x
nuc denote the nu-

cleation field for the vertical arrangement of the soft
spheres and the horizontal arrangement of the soft
spheres, respectively. What’s remarkable is that
µ0H

z
nuc of the models with a gap of 0.5 nm or 1 nm

between the soft particles is comparable to µ0H
x
nuc

for the model with a gap of 5 nm. If the soft inclu-
sions are arranged in chains parallel the easy axis
of the matrix phase, the dipolar interaction is obvi-
ously reinforcing the Fe65Co35 spheres, additionally
to the exchange coupling with the Nd2Fe14B shell.

The magnetic reversal is shown in Fig. 3. Con-
sidering the reversal dynamics of the model with
the inclusions arranged parallel to the x-axis, we
notice that the strayfields of the two outside spheres
act on the central sphere and force it to nucleate
first. For the model with the soft magnetic balls
arranged vertically (in the direction the external
field and the easy direction of the hard matrix), we
expect a reinforcement of the central sphere by the
two outside spheres. This can be observed for gaps
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Table 2: Nucleation field of three soft magnetic
spheres (dincl = 8 nm) inside a hard magnetic shell
(dshell = 42 nm). The gap between the inclusions
is varied from 0.5 nm to 5 nm. The labels x and
z comply with the alignment of the soft magnetic
balls along the x-axis or along the z-axis, respec-
tively. The external field is applied in z-direction.
µ0Hnuc is the value of the external field when a
normalized magnetization 0.9 is reached.

gap µ0H
x
nuc[T] µ0H

z
nuc[T] µ0Hz

nuc−µ0Hx
nuc

µ0Hx
nuc

0.5 nm -3.6014 -3.9615 10.00 %
1.0 nm -3.6945 -4.0416 9.40 %
2.0 nm -3.8470 -4.1303 7.36 %
3.0 nm -3.9602 -4.1895 5.79 %
4.0 nm -4.0446 -4.2299 4.58 %
5.0 nm -4.0953 -4.2369 3.46 %

of 4 nm or larger. But for smaller gaps a stronger
demagnetizing field of the Nd2Fe14B matrix (the
hard phase with holes for the soft inclusions) in the
location of the central inclusions is competing with
the dipolar reinforcement and therefore is forcing it
to nucleate first.

Next we increase the amount of Fe65Co35 in our
models and investigate what happens if we have
longer chains of soft magnetic inclusions in the
Nd2Fe14B matrix. Fig. 4 shows the magnetic re-
versal for 3, 5 and 7 spheres with dincl = 8 nm ar-
ranged in one line along the x- or z-axis with Hext

applied again in z-direction. Remarkable is that
if the soft magnetic spheres are arranged parallel
to the external field then due to dipolar interac-
tions the nucleation field stays approximately the
same (only 0.5 % difference) while the volume of
soft magnetic inclusions is more than doubling. But
if those spheres are aligned perpendicular to Hext

the additional Fe65Co35 is decreasing the coercive
field significantly. In Table 3 we see differences of
up to 15.46 % in µ0Hnuc for those alignments, de-
pending on the number of soft magnetic inclusions
and the gap between them. Again a smaller gap
results in bigger effect due to dipolar interaction
but a slightly smaller coercive field due to a dif-
ferent demagnetizing field and exchange hardening
potential. Regarding the magnetic reversal process
the observations mentioned before for small gaps
are again valid. Nucleation starts at the central
sphere and then moves outwards pairwise, i.e. first
the central sphere, then its two next neighbors, fol-
lowed by their next neighbors and so on.

Figure 3: Magnetic reversal process: The pictures
show the magnetic flux lines. The color denotes
the magnetization direction (red: magnetization
up, blue magnetization down). The gap between
the soft magnetic spheres (dincl = 8 nm) is 1 nm in
the first two columns and 4 nm in the third column.
The external field is applied in z-direction and its
value is written next to each picture. In the first
column the soft magnetic inclusions are aligned per-
pendicular to the applied external field. The inter-
action with the outside inclusions is weakening the
central sphere and forces it to switch first. In the
second and third column the soft magnetic spheres
are aligned in a parallel manner to the applied
external field. The two outside spheres reinforce
the central one and therefore nucleation should not
start in the center. But for gaps smaller than 4 nm
a strong demagnetizing field in the location of the
central sphere caused by the shell diminishes the
strengthening effect due to dipolar interaction.
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Table 3: Nucleation field of 3/5/7 soft magnetic spheres (dincl = 8 nm) in a hard magnetic matrix
(dshell = 72 nm). The gap between the inclusions is varying from 0.5 nm to 2 nm. Longer chains of soft
magnetic spheres decrease the coercive field significantly if aligned perpendicular to the applied external
field but keep the coercive field constant in the other case. The labels X and Z refer to the alignment
of the inclusions along the x-axis or z-axis, respectively. The external field is applied in z-direction.
µ0Hnuc is the value of the external field when the normalized magnetization is 0.9.

gap spheres µ0H
x
nuc[T] µ0H

z
nuc[T] µ0Hz

nuc−µ0Hx
nuc

µ0Hx
nuc

0.5 nm 3 -3.5978 -3.9492 9.77 %
5 -3.4552 -3.9299 13.74 %
7 -3.4034 -3.9297 15.46 %

1.0 nm 3 -3.7029 -4.0478 9.31 %
5 -3.5650 -4.0395 13.31 %
7 -3.5082 -4.0367 15.06 %

2.0 nm 3 -3.8536 -4.1372 7.39 %
5 -3.7466 -4.1458 10.65 %
7 -3.7088 -4.1382 11.58 %
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Figure 4: Magnetic reversal of 3/5/7 soft magnetic
spheres (dincl = 8 nm) in a hard magnetic ma-
trix (dshell = 72 nm). The reinforcement due to
dipolar interaction is capable of eliminating the ex-
pected reduction of the coercive field due to the
extra Fe65Co35 in the model if the inclusions are
aligned in a parallel manner to the applied external
field. The labels X and Z refer to the alignment
of the inclusions along the x-axis or z-axis, respec-
tively. The external field is applied in z-direction.
The easy axis of the hard magnetic matrix is par-
allel to the z-direction.

So far the Fe65Co35 spheres in our models have
been arranged perfectly inline. In the next set of
simulations we place three spheres of size dincl = 8
nm along the z-axis and then translate the cen-
tral sphere along the y-axis to introduce non-perfect
chains. This imperfection in the arrangement of the
spheres is measured with an angle β which is de-
fined as the angle between the z-axis and a straight
line between the centers of the lower and the trans-
lated central sphere. As the problem is not sym-
metric anymore the resulting model is rotated so
that we get the three orientations x, y and z as
shown in Fig. 5 and apply Hext in z direction. The
spheres are translated in a way that the gap is kept
constant at 1 nm while β is rising. dshell = 42 nm.

In general the introduction of some deviation
from the perfect inline model is decreasing the max-
imum possible coercive field as shown in Fig. 6.
But for any angle β one of the three models shown
in Fig. 5 is outperforming the other two. There-
fore there are possibilities to fit many chains of soft
magnetic inclusions next to each other without de-
creasing the coercive field too much.

When having a closer look on the magnetic re-
versal process we see that the central sphere is in-
teracting mainly with one of its neighbors and ne-
glecting the other one. This is different to the inline
model where all three spheres are interacting. If we
reconsider Fig. 3 showing the reversal of some in-
line models, we see the fieldlines passing through all
three spheres. But with rising β the fieldlines pass-
ing through the translated central sphere and one of

5



Figure 5: Introducing some deviation from the in-
line models used before. The central sphere is
translated to open a misarrangement angle β be-
tween the respective system axis and a straight line
through the centers of one of the outside spheres
and the translated central sphere. The position of
the outside soft magnetic inclusions is adapted to
keep the gap between the sphere constant at 1 nm
for all β. The arrows show the orientation of the
applied external field.
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Figure 6: µ0Hnuc for different β. The labels X,
Y and Z match the models as shown in Fig. 5.
There is always one orientation outperforming the
two others. µ0Hnuc is the value of the external field
when the normalized magnetization in the demag-
netization curves drops below 0.9.

its neighbors cannot bend to also pass through the
third inclusion and therefore reduces the intensity
of interaction.

In the next simulations we place multiple chains
of Fe65Co35 inclusions next to each other as shown
in Fig. 7.

In a first approach we arrange the soft magnetic
particles (dincl = 8 nm) in a 3 × 3 × 3/5/7 lattice
with a gap of 1 nm inbetween them as shown on the
right-hand side of Fig. 7. The diameter of the hard
magnetic body is 76 nm. If 63 soft magnetic spheres
are placed inside that shell the model consists of
approximately 7.4 vol.% Fe65Co35 and 92.6 vol.%
Nd2Fe14B. In the case of 27 inclusions the model
contains approx. 3.3 vol.% Fe65Co35.

When the soft magnetic chains are arranged per-

Figure 7: Soft magnetic spheres (dincl = 8 nm) in a
hard magnetic body. The different shadings of the
inclusions refer to the varying number of spheres
used for computing the magnetic reversal. The left
model is used to compute the reversal for 11, 21 and
31 inclusions aligned in 5 chains of spheres where
two spheres of the central chain and its common
neighbor in an outside chain form an equilateral
triangle (see also Fig. 6, β = 60◦). For the right
model the spheres are aligned in a 3×3×3/5/7 lat-
tice. The gap between the spheres is in both cases
1 nm and the external field and the easy directions
are parallel to the x or z direction pictured by those
arrows.

pendicular to the easy axis of the hard matrix we
observe a decreasing coercive field as more Fe65Co35

is placed inside the Nd2Fe14B body as shown in Fig.
8. But when the chains are arranged parallel to the
easy axis the opposite is happening and the magnet
with the higher Fe65Co35 share is performing bet-
ter in terms of coercivity. The share of Fe65Co35

in the magnet is increased by approximately 240
% when placing 63 inclusions instead of 27 into the
Nd2Fe14B body and still µ0H

z
nuc of the magnet with

63 soft magnetic particles is 0.7 % higher.

In a second arrangement shown on the left-hand
side of Fig. 7 we shift the outside chains with re-
spect to the central chain in a way that two cen-
tral spheres and their common outside neighbor are
arranged in an equilateral triangle. For a misar-
rangement angle β = 60◦, µ0Hnuc is reduced signif-
icantly for any orientation of the applied external
field as shown in Fig. 6. Still, due to dipolar inter-
actions, even when almost tripling the number of
soft magnetic inclusions the loss in coercivity can
be neglected, as shown in Fig. 9.

4 Conclusions

In nanocomposite magnets dipolar interactions be-
tween the soft inclusions might be used to stabi-
lize the coercive field. The influence of an effective
anisotropy induced by dipolar interactions has been

6



-3.4 -3.3 -3.2
µ

0
Η [Τ]

-1

-0.5

0

0.5

1

n
o
rm

al
iz

ed
 m

ag
n
et

iz
at

io
n
 [

a.
u
.]

3x3x3
3x3x5 X
3x3x5 Z
3x3x7 X
3x3x7 Z

Figure 8: Magnetic reversal of a Nd2Fe14B sphere
filled with 27/45/63 Fe65Co35 inclusions arranged
as shown on the right-hand side of Fig. 7. The
labels X and Z refer to the orientation of the applied
external field. Remarkable is the gain of coercive
field although the amount of Fe65Co35 is increased
and the amount of Nd2Fe14B is decreased.
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Figure 9: Magnetic reversal of a Nd2Fe14B sphere
filled with 11/21/31 Fe65Co35 inclusions arranged
as shown on the left-hand side of Fig. 7. The la-
bels X and Z refer to the orientation of the applied
external field and the easy directions. Although
we almost triple the number of Fe65Co35 inclusions
the resulting coercive field stays approximately the
same if the orientation of the model is chosen the
right way.

shown for soft magnetic spheres embedded in a hard
magnetic matrix. Micromagnetic simulations show
that the coercive field can be altered by up to 15
percent by rearranging the soft magnetic spheres
while the volume fraction between the hard and
the soft phases is kept the same.

References

[1] Hadjipanayis, G. and Gabay, A., IEEE Spec-
trum 48(8), (2011) 36–41.

[2] Skomski, R. and Coey, J. M. D., Am. Physical
Soc. Phys. Rev. B 48, (1993) 15812–15816.

[3] Schrefl, T., Kronmüller, H. and Fidler, J., J.
Magn. Magn. Mater. 127, (1993) L273–L277.

[4] Skomski, R., Liu, Y., Shield, J. E., Hadji-
panayis, G. C. and Sellmyer, D. J., J. Appl. Phys.
107, (2010) 09A739-1–09A739-3.

[5] Mizoguchi, T. and Cargill III, G. S., J. Appl.
Phys. 50, (1979) 3570–3582.

[6] Cohen, M. H. and Keffer, F., Phys. Rev. 99,
(1955) 1128–1134.

[7] Schrefl, T., Hrkac, G., Bance, S., Suess, D.,
Ertl, O. and Fidler, J., Numerical Methods
in Micromagnetics (Finite Element Method),
Handbook of Magnetism and Advanced Magnetic
Materials 2(John Wiley & Sons, Ltd., 2007).

7


	Introduction
	Method
	Results
	Conclusions

