
Abstract

The coercive field of permanent magnets decays with temperature.
At non-zero temperature the system can overcome a finite energy barrier
through thermal fluctuations. Using finite element micromagnetic simu-
lations, we quantify this effect, which reduces coercivity in addition to the
decrease of the coercive field associated with the temperature dependence
of the anisotropy field, and validate the method through comparison with
existing experimental data.
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1 Introduction

The importance of permanent magnets to many modern technologies has led to
increased interest in developing magnets that contain lower amounts of supply-
critical materials [1]. Progress in processing, characterization and simulation
of rare earth permanent magnets has helped continually improve their perfor-
mance. Reversal depends on the microstructure, with the grain boundary phase
and surface defects being of particular importance. Numerical micromagnetics
is successfully being used to understand the reversal mechanisms that determine
important extrinsic properties such as the coercive field Hc [2].

Understanding the temperature dependence of coercivity is of importance in
the design of permanent magnets for applications at high temperatures, e.g. in
the motors of electric and hybrid vehicles where the operating temperature is
typically around T = 450 K. In leading order, the temperature dependence of
the intrinsic magnetic properties causes the reduction of the coercive field with
temperature, T [3]. This is expressed by the well known relation [4]

Hc(T ) = α
2K(T )

µ0Ms(T )
−NeffMs(T ) (1)

which relates the coercive field, Hc, to the the anisotropy constant, K(T ), and
the magnetization, Ms(T ). In (1) µ0 is the permeability of vacuum. While
equation (1) is widely used to classify permanent magnets based on the mi-
crostructural parameters α and Neff , it also expresses the main contribution to
the temperature dependence of Hc(T ). In particular equation (1) relates the
coercive field to the nucleation field, 2K(T )/(µ0Ms(T )), of a small magnetic
sphere [5]. The role of thermal fluctuations becomes evident through viscosity
experiments. Under the action of a constant applied field the magnetization
decays with time [6]. The change of magnetization within the time t is given by

∆M(t) = −S ln(t). (2)
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The viscosity, S, is attributed to irreversible changes of the magnetization across
the energy barrier. The logarithmic dependence results from the distribution
of energy barriers in the magnet. Under the assumption that a coercivity is
related to the expansion of an already reversed nucleus the coercive field of a
permanent magnet can be written as [7, 8]

Hc = α′
γ

µ0Msv1/3
−NeffMs −

25kBT

µ0Msv
. (3)

Here kBT is the Boltzmann constant and α′ replaces α. Similarly, to equation
(1) the intrinsic parameters and the derived quantities depend on temperature.
In order to improve the readability, we have dropped the (T ) behind the sym-
bols. γ = γ(T ) is the energy per unit area of a Bloch wall, γ = 4

√
AK, with

the exchange constant A = A(T ). The activation volume, v = v(T ), may be
associated with the volume of the initial nucleus. The last term in equation (3)
is proportional to the fluctuation field. The fluctuation field drives the systems
over an energy barrier of ∆E = 25kBT within the characteristic measurement
time. This energy can be overcome within the characteristic measurement time
of the coercive field. Applying the Arrhenius-Néel law the relaxation time over
an energy barrier, ∆E is

τ =
1

f0
exp

(
∆E

kBT

)
(4)

where f0 is the attempt frequency, which limits the probability for reversal.
The first term of equation (3) can be rewritten as α′′2K(T )/(µ0Ms) when the
activation volume is assumed to be proportional to the Bloch wall width δB =√
A/K. The parameters α, α′, and Neff can be derived by fitting the measured

temperature dependent coercive field to equations (1) and (3) [9].
In particulate and thin film recording the particle or grain size is small.

The total magnetic volume, V , is low. In zero field the energy barrier for
magnetization reversal is given by the smaller of the two values ∆E0 = KV or
∆E0 = 4F

√
AK, where F is the minimum cross section of a columnar grain.

At an opposing field H the energy barriers [10] decays with field according to

∆E = ∆E0

(
1−H/H0

)n
. (5)

Here ∆E0 is the energy barrier in zero field and H0 is the field where the barrier
is zero. The exponent n has been discussed in detail in the literature, covering
the dependence of n on factors including external field strength and field angle
[11, 12]. A value close to n = 2 is usually used in situations corresponding to
coherent reversal, while n = 1.5 corresponds to nucleation and expansion. When
using micromagnetics, as in this article, the reversal mode is known directly
from the calculations, so it is not necessary to know the value of n to determine
the type of reversal mechanism. Equations (4) and (5) lead to a time and
temperature dependent coercive field [10]

Hc(t, T ) = H0

(
1−

(
kBT

∆E0
ln(f0t)

)1/n
)

(6)

Equation (6) gives the field that causes switching of half of the particles or
grains within time t.
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Because of the much larger grain size in permanent magnets and higher
magneto-crystalline anisotropy in modern permanent magnets as compared to
magnetic recording materials, it was widely believed that thermal fluctuations
play only a minor role during magnetization reversal in permanent magnets.
In permanent magnets the magnetization reversal is initiated within a small
volume: either the reversed nucleus or the volume associated with a domain
wall depinning process. Similarly to magnetization reversal in small particles
thermal activation helps to initiate reversal within this characteristic volume.
Advances in computational methods and computing power have made it pos-
sible to compute the effects of temperature in permanent magnets taking into
account both the temperature dependent intrinsic properties and the thermal
fluctuations over finite energy barriers. Using methods from chemical physics
[13], we compute the energy barrier as a function of the field and thus can esti-
mate the influence of thermal fluctuations on the coercive field. Details of the
computations will be presented in section 2 of this paper. We will demonstrate
the influence of thermal fluctuations on coercivity for Pr2Fe14B magnets in sec-
tion 3.1, comparing the angle dependence of coercivity at 4.2 K, 175 K and 300
K.

Traditional Nd2Fe14B permanent magnets are doped with dysprosium to
improve their performance. The higher uniaxial anisotropy K and lower magne-
tization Ms of the dysprosium increases the anisotropy field HA = 2K/(µ0Ms),
which results in a higher Hc but, of course, a lower overall magnetization. Im-
portantly, the market price of dysprosium and other heavy rare earth elements
peaked drastically in 2010, prompting a frantic search for new permanent mag-
nets using cheaper materials. In order to produce magnets with high energy
product, using fewer rare earth elements, a number of routes are currently be-
ing followed. In addition to the grain boundary phase which separates the grains
magnetically, modern magnets use the concept of magnetic surface hardening
[14, 15] for improved coercivity. The local anisotropy field near the surfaces of
each grain is increased by partially substituting Nd with Dy in Nd2Fe14B based
magnets. In section 3.2 we compute the coercivity of Nd2Fe14B grains with a
thin (Dy,Nd)2Fe14B shell.

2 Method

In this work we follow a computational micromagnetics approach to treat the
temperature dependence of the coercive field. The classical nucleation field the-
ory starts [5] from the uniform magnetic states and determines the critical field
when this state becomes unstable. Under the action of an opposing field the
system is in a metastable minimum. An energy barrier separates this local
minimum (magnetization and field antiparallel) of the global minimum (mag-
netization and field parallel). With increasing opposing field the energy barrier
decreases. At the nucleation field the local minimum vanishes; the system is at
a saddle point and may reverse towards a global minimum. In non-ellipsoidal
particles the demagnetizing field is non-unform. In turn the remanent magnetic
state and magnetic states under an opposing external field are inhomogeneous.
However, a similar stability criterion as for the ellipsoid may be applied to define
the nucleation field [16, 17, 18]. Standard numerical micromagnetic methods
implicitly apply this criterion for the calculation of the switching field. The
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temperature dependence of the coercive field can be computed when the tem-
perature dependent intrinsic magnetic properties, Ms(T ), K(T ), and A(T ) are
used as input for the computations. Similarly to an experiment these computed
temperature dependent values for the coercive field can be fitted to equation (1)
[19].

In addition to the effect of the temperature dependent intrinsic magnetic
properties on the coercivity, the influence of the thermal fluctuations on the
temperature dependence of the coercive field can be addressed using numerical
micromagnetics. By means of methods widely applied in chemical physics for
the computation of reaction rates [13], it is possible to compute the height of
the energy barrier separating the local minimum associated with the magnetic
state before the reversal from the minimum that corresponds to the reversed
state [20]. Reversal occurs when the opposing field reduces the energy barrier
to a height that can be overcome by thermal energy [21]. This field is the
coercive field and is a function of temperature. This method has been applied
to compute the finite temperature switching field of permalloy elements and the
thickness dependence of the coercive field in granular recording media [22].

[Figure 1 about here.]

The simulation process is illustrated in Fig. 1. We first compute the demag-
netization curve of the magnet using a standard micromagnetic solver (Fig. 1a).
We can either compute minimum energy states [23] or solve the Landau-Lifshitz
Gilbert (LLG) equation [24] for different applied fields. The coercive field ob-
tained for the simulation of the demagnetization curve corresponds to H0 in
equation (6). It is the field where the energy barrier that separating the states
before and after irreversible switching is zero. Then we want to compute the
energy barrier between a state with |Hi| < |H0| which we denote with Minitial

and the reversed state which is called Mfinal. The transient magnetic states
from the computation of the demagnetization curve serve as initial path for the
computation of the minimum energy path connecting Minitial and Mfinal (Fig.
1b). A path is optimal, if for any point along the path the gradient of the energy
is parallel to the path. In other words: the component of the energy gradient
normal to the path is zero. This path is called the minimum energy path, which
means that the energy is stationary for any degree of freedom perpendicular
to the path. Let’s denote the magnetic state of the point with the maximum
energy in the path by M∗. This is the saddle point. The difference between the
energy of the saddle point and the initial state is the energy barrier:

∆E(Hi) = E (M∗)− E (Minitial(Hi)) . (7)

We apply the climbing image nudged elastic band method [13, 20] or the mod-
ified string method [25] to compute the minimum energy path. Both methods
take a series of magnetization configurations as input and minimize the energy
path, formed from a series of connected nodes, in the multi-dimensional con-
figuration space according to the local gradient at each node. They differ only
in their algorithms. The nudged elastic band method employs a spring force
between adjacent nodes in order that they do not become too separated. The
string method renormalizes the distance between adjacent nodes after each iter-
ation. We repeat the computation of the energy barrier (7) for different applied
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fields and fit the results to equation (5). The critical field value at which the en-
ergy barrier becomes 25 kBT is the temperature dependent coercive field, Hc(T ),
see Fig. 1c and Fig. 4 in the paper by Sharrock [10]. The value of 25 kBT is the
energy barrier that follows from (4) for a typical measurement time of 1 second
[26]. Hereby an attempt frequency of f0 = 1011Hz was assumed. The attempt
frequency may depend on the nature of the domain nucleation or depinning
process. Thus for a more accurate numerical treatment of Hc(T ) a method for
the computation of the attempt frequency such as forward flux sampling [27]
may be applied.

[Table 1 about here.]

We apply a finite element method for the computation of the demagneti-
zation curve and the energy barriers. Rave and co-workers[28] suggest that
the mesh size should be smaller than the theoretical exchange length, which
is defined analytically as L =

√
A/µ0M2

s for a ferromagnet. To satisfy this
requirement while restraining the finite element mesh to a reasonable number
of elements we use an adaptive mesh, where the fine mesh is constrained to the
regions of domain wall nucleation. The intrinsic material constants used for
the simulations are given in Table 1. The solver uses a hybrid finite element
/ boundary element method to calculate the external demagnetizing field and,
unless otherwise stated, neighbouring phases in the models are fully exchange
coupled according to the local material parameters.

3 Results & Discussion

3.1 Surface defects in PrFeB grains

A single Pr2Fe14B grain is modelled as a cube with 100 nm edge length and
a soft surface defect with 0.8 nm thickness and uniaxial anisotropy constant
K = 0. Confining the defect to one corner allows a reduction in model size
and thus simulation cost, since the nucleation region must be finely discretized,
without changing the resulting critical fields. The initial magnetization is in the
+z direction, parallel to the c-axis. An opposing field is applied with an angle
θH from the −z direction in the z − x plane.

[Figure 2 about here.]

Fig. 2 shows the thermally activated magnetization reversal process schemat-
ically. Reversal begins with the rotation of the magnetization in the soft defect.
As the field increases, the magnetization within the nucleus rotates towards the
applied field direction. The Zeeman energy decreases and makes the presence of
a domain wall energetically favourable. A domain wall like state forms between
the nucleus and rest of the magnet. Increasing the field further reduces the
energy barrier to zero, at which point the nucleus expands and the domain wall
rapidly passes through the remaining grain volume.

The energy barriers corresponding to a range of applied field strengths are
calculated by minimizing this path using the nudged elastic band method. Fit-
ting the field-dependent barrier height ∆E(Hi) to equation (5) the temperature
dependent coercivity is estimated. Fig. 3 shows the angle dependent coer-
cive field computed for different temperatures. The dashed lines are computed
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with an LLG solver, which correspond to the temperature dependent coerciv-
ity, H0(T ), taking into account the temperature dependent intrinsic parameters
but neglecting possible fluctuations over finite barriers. The solid lines give
the temperature dependent coercivity, Hc(T ), including both the temperature
dependent intrinsic material properties and thermal hopping over finite energy
barriers. With increasing temperature the difference between H0(T ) and Hc(T )
increases. For a field angle of zero the relative change of the coercivity by
thermal fluctuations

∆Hfl(T ) =
H0(T )−Hc(T )

H0(T )
(8)

is 0.01, 0.11, and 0.18 for a temperature of 4.5 K, 175 K, and 300 K, respectively.
It is interesting to note that with increasing temperature the minimum in the
coercive field as function of temperature becomes less pronounced.

[Figure 3 about here.]

3.2 Grain boundary diffused magnetic grains

We simulate a Dy grain boundary diffused magnetic grain with a Nd2Fe14B
core, a hard 4 nm (Dy47,Nd53)2Fe14B shell and a 2 nm soft surface defect. The
soft defect has the properties of (Dy47,Nd53)2Fe14B except the uniaxial mag-
netocrystalline anisotropy constant is reduced to K = 0. The outer diameter
of the dodecahedral grain is constant at 50 nm. Intrinsic material properties
are given in Table 1. The thermally activated reversal process at T = 450 K is
illustrated in Figure 4. Reversal begins by rotation of the magnetic moments
within the soft defect before nucleation of a reversal domain at the corner.

[Figure 4 about here.]

The insets in Figure 4b show the grain and the formation of the reversed
nucleus in the soft outer defect using a three-dimensional contour plot. The solid
line plot gives the total energy of the system along the minimum energy path
calculated using the string method with an applied field of 2.8 T. At the saddle
point, the point with maximum energy along the minimum energy path, a small
nucleus is formed at the corner of the dodecahedron. Figure 4c gives the energy
barrier as function of the applied field, ∆E(H) along with the corresponding
fit to Equation 5, where n = 1.37. The critical field where the barrier crosses
the line ∆E(H) = 25kBT is the coercive field computed taking into account
thermal fluctuations. Without thermal fluctuations the barrier would have to
vanish (∆E(H) = 0) for magnetization reversal to occur. At a temperature of
T = 450 K thermal fluctuations reduce the coercive field from its static value
µ0H0 = 3.6 T to µ0Hc = 2.78 T. This gives a relative change of the coercivity
by thermal fluctuations of ∆Hfl(450K) = 0.23.

[Table 2 about here.]

In order to understand the influence of the (Dy47,Nd53)2Fe14B shell on the
thermal stability of the coercive field, we calculate H0(T ) and Hc(T ) for dif-
ferent configurations: (i) a perfect Nd2Fe14B grain, (ii) a Nd2Fe14B grain with
a 2 nm thick soft magnetic surface defect (K = 0), and (iii) the above dis-
cussed Nd2Fe14B core / (Dy47,Nd53)2Fe14B shell grain. Table 2 summarized
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the results. At T = 450 K the perfect Nd2Fe14B grain shows a coercivity of
µ0Hc = 2.62 T. Adding a surface defect the coercivity reduces to µ0Hc = 1.8 T.
The (Dy47,Nd53)2Fe14B recovers coercivity and compensates the loss in Hc

caused by the defect: The coercivity of the core/shell grain with a surface de-
fect is µ0Hc = 2.78 T. This value is higher than the coercivity of the perfect
Nd2Fe14B without a defect. While there is no guarantee that such a diffusion
shell fabricated experimentally will be continuous and of constant thickness,
the key message is that if you can make a perfect diffusion shell you only need
4 nm to reach the target coercivity. We are able to make a prediction, using
simulation, of how thick the diffusion layer needs to be to reach the required
coercivity.

It is important to validate our simulations by comparing to experimental
results. Sepehri-Amin et al. [29] found experimentally a coercivity of 1.5 T for
ultrafine-grained anisotropic Nd–Fe–B magnets, where the grains are platelet-
like in shape. The reduction in coercivity due to grain shape was recently
investigated by Bance at al. [30], where it was shown that, for a 50 nm grain di-
ameter, an aligned cubic grain has a 0.85 reduction in coercivity with respect to
a dodecahedral grain shape. Additionally, grain easy axis misalignment reduces
coercivity in real magnets. Sepehri-Amin et al. suggest a grain misalignment of
around 15 degrees in their sample. Using a Stoner-Wohlfarth model this gives
an approximate further reduction in coercivity of 0.61 [31, 2]. Combining the
two reduction factors from shape and misalignment to adjust our calculated
value for Hc of the dodecahedral grain with a defect but no hard shell at 300 K
we go from 3.23 T to 1.68 T, which agrees well with the experimental value.

4 Conclusions

We presented a micromagnetic scheme for the computation of the temperature
dependence of coercivity in permanent magnets. In addition to the change of
the coercive field through the change of the temperature dependent anisotropy
field, thermal fluctuations cause a further reduction of Hc. This relative change
of the coercivity owing to thermal fluctuations is around 15 percent at room
temperature and 25 percent at 450 K.

The temperature dependence of the coercive field was calculated for Dy
diffused permanent magnets. The results show that a (Dy47,Nd53)2Fe14B shell
of 4 nm only is sufficient to compensate the loss in coercivity caused by soft
magnetic defects.
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the so-called activation volume. The energy barrier ∆E is the
difference in the total magnetic Gibbs free energy between the
initial configuration and the saddle configuration. The inset im-
ages show the nucleation of the reversal domain, which occurs at
the outer surface, within the soft defect layer. Black arrows indi-
cate the local magnetization direction, which initially opposes the
applied field H. (c) ∆E is calculated for a range of applied field
strengths, allowing an estimation of the field required to reduce
the energy barrier to a height of 25 kBT . . . . . . . . . . . . . . . 16
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Figure 1: Schematic representation of the method for calculating thermally ac-
tivated coercivity using numerical micromagnetics: (a) equilibrium states are
calculated during a hysteresis simulation, using LLG micromagnetics or an en-
ergy minimization method; (b) energy barriers along a path in configuration
space are calculated using the elastic band method or string method. p is the
distance along this path; (c) the thermally activated coercivity is estimated as
the field required to reduce the energy barrier height to 25 kBT .
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Figure 2: Schematic of magnetization reversal. Sketches of the magnetic state
in the metastable minimum before reversal (1), at the saddle point (2), and
after passing the saddle point (3).

14



100 nm

20 nm

0.8 nm

Main phase 
(Pr2Fe14B)

Defect
(K1 = 0)

0 15 30 45 60 75
Field angle [degrees]

0

2

4

6

8

10

12

14

16

µ 0H
c

[T
]

T = 4.2 K

175 K

300 K
LLG only (dashed lines)

Thermal activation (solid lines)

Figure 3: Coercive field as a function of applied field angle for a cubic Pr2Fe14B
grain calculated without thermal activation (dashed lines) and including thermal
activation (solid lines). The grain includes an anisotropy-reduced surface defect
layer of 0.8 nm thickness and has an edge length of 100 nm. The inset images
show the grain model used with the surface defect of 0.8 nm thickness and
reduced uniaxial anisotropy.
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Figure 4: Simulation results for calculation of thermally-activated coercive field
in a single grain of a Dy grain boundary diffused core-shell permanent magnet
at 450 K. (a) Schematic representation of the model (not to scale). (b) The
minimum energy path during reversal under an applied field of 2.8 T, calculated
using the string method. The saddle point of highest energy corresponds with
the so-called activation volume. The energy barrier ∆E is the difference in the
total magnetic Gibbs free energy between the initial configuration and the saddle
configuration. The inset images show the nucleation of the reversal domain,
which occurs at the outer surface, within the soft defect layer. Black arrows
indicate the local magnetization direction, which initially opposes the applied
field H. (c) ∆E is calculated for a range of applied field strengths, allowing
an estimation of the field required to reduce the energy barrier to a height of
25 kBT .
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Table 1: Material properties of the phases used in the simulations.

Name T (K) K(MJ/m3) µ0Ms(T) A(pJ/m)
Pr2Fe14B 4.2 23.5[32] 1.85[33] 11.3
Pr2Fe14B 175 12.39[32] 1.78[33] 10.6
Pr2Fe14B 300 5.40[32] 1.56[33] 8.12

(Dy47,Nd53)2Fe14B 300 5.17[34] 1.151[34] 8.7[35]
(Dy47,Nd53)2Fe14B 450 2.70[34] 0.990[34] 6.44[35]

Nd2Fe14B 300 4.30[36] 1.613[36] 7.7[37]
Nd2Fe14B 450 2.09[36] 1.285[36] 4.89[37]
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Table 2: Effect of a (Dy47,Nd53)2Fe14B shell on the coercive field of a Nd2Fe14B
grain. The first column gives the thickness of a defect layer with K = 0.
The second column gives the thickness of the (Dy47,Nd53)2Fe14B shell. H0

is the coercive field taking into account the temperature dependence of the
intrinsic materials parameters only. Hc is the temperature dependent coercive
field including thermal fluctuations. The last column gives the relative change
in the coercive field owing to thermal fluctuations.

defect(nm) shell (nm) T (K) µ0H0(T) µ0Hc(T) ∆Hfl

0 0 300 5.89 4.97 0.16
0 0 450 3.58 2.62 0.27
2 0 300 3.84 3.23 0.16
2 0 450 2.44 1.80 0.26
2 4 300 5.81 4.97 0.14
2 4 450 3.60 2.78 0.23
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