[Paper] Enhanced Nucleation Fields due to Dipolar Interactions in Nanocomposite Magnets
Our paper titled “Enhanced Nucleation Fields due to Dipolar Interactions in Nanocomposite Magnets” was presented by first author, Johann Fischbacher, at the JEMS 2012 conference and subsequently published in the The European Physical Journal B. Figure: Magnetic reversal process: The pictures show the magnetic flux lines. The color denotes the magnetization direction (red: magnetization up, blue magnetization down). The gap between the soft magnetic spheres (d incl = 8 nm) is 1 nm in the first two columns and 4 nm in the third column. The external field is applied in z-direction and its value is written next to each picture. In the first column the soft magnetic inclusions are aligned perpendicular to the applied external field. The interaction with the outside inclusions is weakening the central sphere and forces it to switch first. In the second and third column the soft magnetic spheres are aligned in a parallel manner to the applied external field. The two outside spheres reinforce the central one and therefore nucleation should not start in the center. But for gaps smaller than 4 nm a strong demagnetizing field in the location of the central sphere caused by the shell diminishes the strengthening effect due to dipolar interaction. ...