Configuring KNIME to work with Python 2.7.x on Windows

UPDATE: These days it is recommended to use Python3 instead of Python2 Apparently it is tricky to get Python integration working in the KNIME Analytics Platform. If you read the official guide too quickly you can miss some critical information at the bottom of the page. I was getting an error complaining that the google.protobuf library was missing even though I thought that I had everything installed correctly: Library google.protobuf is missing, required minimum version is 2....

August 23, 2017 · Simon

How to get up-to-date Python packages without bothering your cluster admin

If you have ever been stuck as a user on an out-of-date cluster without root access it can be frustrating to ask the admin guy to install packages for you. Even if they respond, by the time they get round to it you might have moved onto something else. The moment could be gone. Luckily, as far as Python is concerned, the pyenv project allows users to install their own local Python version or even assign different versions to different directories/projects....

September 1, 2016 · Simon

[PDF] “Grain-size dependent demagnetizing factors in permanent magnets” reprint update

New paper The reprint of our Journal of Applied Physics (JAP) paper “Grain-size dependent demagnetizing factors in permanent magnets” has been updated since the old version was not being discovered by the Google Scholar crawler. There is also now a version on arXiv. I hope that Google Scholar will now correctly index the paper so that it’s easier for people to find! Citation The full, correct reference for the paper is:...

March 20, 2016 · Simon

5 Tips for making finite element models with Salome

Salome is an open source software package used to create geometric models and finite element meshes for use in numerical simulations. It is also able to perform its own numerical simulations and has post-processing capabilities built in. Here are my 5 tips for anyone who is interested in using Salome for model and mesh creation. 1. Practice manually first This goes without saying. Although Salome has a powerful Python-based scripting capability, it is worth practicing with manual model generation....

August 15, 2015 · Simon

[Paper] “Thermal Activation in Permanent Magnets” published in JOM

This week our new paper titled “Thermal Activation in Permanent Magnets” has been published in JOM (Springer). The invited paper is under a special topic, “Permanent Magnets beyond Nd-Dy-Fe-B”. An author manuscript (reprint) is available here. Fig 1: Explanation of method for calculating the thermally activated coercivity of using micromagnetics. In the paper we provide a more detailed overview of the micromagnetic methods we have developed to model the thermal activation of permanent magnets....

April 24, 2015 · Simon

“ROMEO” project featured on TV news

Our EU-funded FP7 project “Replacement and Original Magnet Engineering Options” (ROMEO) has recently been covered in the news in Slovenia, to promote the participation of our Slovenian collaborators. Video »Video file« Newsletter There is also now a project newsletter highlighting the aims and progress of the project. Please click here to download it.

April 21, 2015 · Simon

[Paper] “Thermally activated coercivity in core-shell permanent magnets” published in vol. 117 of Journal of Applied Physics.

Our new paper “Thermally activated coercivity in core-shell permanent magnets” has been published today as J. Appl. Phys. 117, 17A733 (2015); http://dx.doi.org/10.1063/1.4916542 . In the paper we use numerical miromagnetics to calculate the performance of nanostructured core-shell-like permanent magnets, like the type that can now be produced by grain boundary diffusion of granular hot-deformed or sintered rare earth permanent magnets. FIG. 3. Reversal processes in the sin- gle grain models with (i) a pure NdFeB grain, (ii) a NdFeB grain with a soft outer defect, and (iii) NdFeB core, (Dy, Nd)FeB shell and an outer soft defect....

March 27, 2015 · Simon

[Paper] Micromagnetics for the coercivity of nanocomposite permanent magnets

Our paper titled “Micromagnetics for the coercivity of nanocomposite permanent magnets” has been published in the proceedings of the 23rd International Workshop on Rare Earth and Future Permanent Magnets and Their Applications (REPM2014). The proceedings were not made available to the public but we are providing a PDF reprint here. Fig. 1. Switching field of Nd 2 Fe 14 B cubes and spheres with volume V The work was presented by Johann Fischbacher on 19th August 2014 in Annapolis, Maryland....

January 29, 2015 · Simon

[Paper] Enhanced Nucleation Fields due to Dipolar Interactions in Nanocomposite Magnets

Our paper titled “Enhanced Nucleation Fields due to Dipolar Interactions in Nanocomposite Magnets” was presented by first author, Johann Fischbacher, at the JEMS 2012 conference and subsequently published in the The European Physical Journal B. Figure: Magnetic reversal process: The pictures show the magnetic flux lines. The color denotes the magnetization direction (red: magnetization up, blue magnetization down). The gap between the soft magnetic spheres (d incl = 8 nm) is 1 nm in the first two columns and 4 nm in the third column....

January 29, 2015 · Simon

New paper: “Grain-size dependent demagnetizing factors in permanent magnets”

Our new paper “Grain-size dependent demagnetizing factors in permanent magnets” has been published in Journal of Applied Physics (JAP). http://dx.doi.org/10.1063/1.4904854 UPDATED UPDATE: an updated reprint version that should be better for Google Scholar crawling is now available here Abstract: The coercive field of permanent magnets decreases with increasing grain size. The grain size dependence of coercivity is explained by a size dependent demagnetizing factor. In Dy free Nd2Fe14B magnets, the size dependent demagnetizing factor ranges from 0....

December 19, 2014 · Simon

Paper “Hard Magnet Coercivity” published in proceedings of REPM2014

This August Prof. Dominique Givord of Institut Néel – CNRS presented our paper titled “Hard Magnet Coercivity” during the 23rd International Workshop on Rare earth and Future Permanent Magnets and Their Applications (REPM2014) in Annapolis, Maryland. The manuscript was included in the conference proceedings and we would now like to make the reprint available to the wider public: Please click here for the PDF file. Abstract: Based on a critical analysis of the experimental coercive properties, general considerations on the reversal mechanisms in RFeB magnets are recalled....

December 12, 2014 · Simon