Configuring KNIME to work with Python 2.7.x on Windows

UPDATE: These days it is recommended to use Python3 instead of Python2 Apparently it is tricky to get Python integration working in the KNIME Analytics Platform. If you read the official guide too quickly you can miss some critical information at the bottom of the page. I was getting an error complaining that the google.protobuf library was missing even though I thought that I had everything installed correctly: Library google.protobuf is missing, required minimum version is 2.5.0 ...

August 23, 2017 · 3 min · Simon

How to get up-to-date Python packages without bothering your cluster admin

If you have ever been stuck as a user on an out-of-date cluster without root access it can be frustrating to ask the admin guy to install packages for you. Even if they respond, by the time they get round to it you might have moved onto something else. The moment could be gone. Luckily, as far as Python is concerned, the pyenv project allows users to install their own local Python version or even assign different versions to different directories/projects. ...

September 1, 2016 · 1 min · Simon

[PDF] “Grain-size dependent demagnetizing factors in permanent magnets” reprint update

New paper The reprint of our Journal of Applied Physics (JAP) paper “Grain-size dependent demagnetizing factors in permanent magnets” has been updated since the old version was not being discovered by the Google Scholar crawler. It is also available on arXiv.org. Full reference S. Bance, B. Seebacher, T. Schrefl, L. Exl, M. Winklhofer, G. Hrkac, G. Zimanyi, T. Shoji, M. Yano, N. Sakuma, M. Ito, A. Kato and A. Manabe, “Grain-size dependent demagnetizing factors in permanent magnets”, J. Appl. Phys. 116, 233903 (2014)

March 20, 2016 · 1 min · Simon

5 Tips for making finite element models with Salome

Salome is an open source software package used to create geometric models and finite element meshes for use in numerical simulations. It is also able to perform its own numerical simulations and has post-processing capabilities built in. Here are my 5 tips for anyone who is interested in using Salome for model and mesh creation. 1. Practice manually first This goes without saying. Although Salome has a powerful Python-based scripting capability, it is worth practicing with manual model generation. By that I mean, clicking with your mouse in the GUI. Manual practice lets you get familiar with the quirks of the Salome workflow, which has a different mentality to many other model generator programs. ...

August 15, 2015 · 3 min · Simon

[Paper] “Thermal Activation in Permanent Magnets” published in JOM

This week our new paper titled “Thermal Activation in Permanent Magnets” has been published in JOM (Springer). The invited paper is under a special topic, “Permanent Magnets beyond Nd-Dy-Fe-B”. An author manuscript (reprint) is available here. Fig 1: Explanation of method for calculating the thermally activated coercivity of using micromagnetics. In the paper we provide a more detailed overview of the micromagnetic methods we have developed to model the thermal activation of permanent magnets. These methods allow us to simulate and understand the behaviour of permanent magnets at finite temperatures, which is important since the generators in wind turbines and electric motors in green cars operate at higher temperatures. For example, in electric cars the typical operation temperature of the motors can be around 450ºK (177º C). ...

April 24, 2015 · 2 min · Simon

“ROMEO” project featured on TV news

Our EU-funded FP7 project “Replacement and Original Magnet Engineering Options” (ROMEO) has recently been covered in the news in Slovenia, to promote the participation of our Slovenian collaborators. Video »Video file« Newsletter There is also now a project newsletter highlighting the aims and progress of the project. Please click here to download it.

April 21, 2015 · 1 min · Simon

[Paper] “Thermally activated coercivity in core-shell permanent magnets” published in vol. 117 of Journal of Applied Physics.

Our new paper “Thermally activated coercivity in core-shell permanent magnets” has been published today as J. Appl. Phys. 117, 17A733 (2015); http://dx.doi.org/10.1063/1.4916542 . In the paper we use numerical miromagnetics to calculate the performance of nanostructured core-shell-like permanent magnets, like the type that can now be produced by grain boundary diffusion of granular hot-deformed or sintered rare earth permanent magnets. FIG. 3. Reversal processes in the sin- gle grain models with (i) a pure NdFeB grain, (ii) a NdFeB grain with a soft outer defect, and (iii) NdFeB core, (Dy, Nd)FeB shell and an outer soft defect. Thermally activated coercive field values are indicated with the field direction (red arrows). The saddle point image is the configuration with the highest total energy, forming the peak of the energy barrier. ...

March 27, 2015 · 1 min · Simon

[Paper] Micromagnetics for the coercivity of nanocomposite permanent magnets

Our paper titled “Micromagnetics for the coercivity of nanocomposite permanent magnets” has been published in the proceedings of the 23rd International Workshop on Rare Earth and Future Permanent Magnets and Their Applications (REPM2014). The proceedings were not made available to the public but we are providing a PDF reprint here. Fig. 1. Switching field of Nd 2 Fe 14 B cubes and spheres with volume V The work was presented by Johann Fischbacher on 19th August 2014 in Annapolis, Maryland. ...

January 29, 2015 · 2 min · Simon

[Paper] Enhanced Nucleation Fields due to Dipolar Interactions in Nanocomposite Magnets

Our paper titled “Enhanced Nucleation Fields due to Dipolar Interactions in Nanocomposite Magnets” was presented by first author, Johann Fischbacher, at the JEMS 2012 conference and subsequently published in the The European Physical Journal B. Figure: Magnetic reversal process: The pictures show the magnetic flux lines. The color denotes the magnetization direction (red: magnetization up, blue magnetization down). The gap between the soft magnetic spheres (d incl = 8 nm) is 1 nm in the first two columns and 4 nm in the third column. The external field is applied in z-direction and its value is written next to each picture. In the first column the soft magnetic inclusions are aligned perpendicular to the applied external field. The interaction with the outside inclusions is weakening the central sphere and forces it to switch first. In the second and third column the soft magnetic spheres are aligned in a parallel manner to the applied external field. The two outside spheres reinforce the central one and therefore nucleation should not start in the center. But for gaps smaller than 4 nm a strong demagnetizing field in the location of the central sphere caused by the shell diminishes the strengthening effect due to dipolar interaction. ...

January 29, 2015 · 2 min · Simon

New paper: “Grain-size dependent demagnetizing factors in permanent magnets”

Our new paper “Grain-size dependent demagnetizing factors in permanent magnets” has been published in Journal of Applied Physics (JAP). Abstract: The coercive field of permanent magnets decreases with increasing grain size. The grain size dependence of coercivity is explained by a size dependent demagnetizing factor. In Dy free Nd2Fe14B magnets, the size dependent demagnetizing factor ranges from 0.2 for a grain size of 55 nm to 1.22 for a grain size of 8300 nm. The comparison of experimental data with micromagnetic simulations suggests that the grain size dependence of the coercive field in hard magnets is due to the non-uniform magnetostatic field in polyhedral grains. ...

December 19, 2014 · 1 min · Simon

Paper “Hard Magnet Coercivity” published in proceedings of REPM2014

This August Prof. Dominique Givord of Institut Néel CNRS presented our paper titled “Hard Magnet Coercivity” during the 23rd International Workshop on Rare earth and Future Permanent Magnets and Their Applications (REPM2014) in Annapolis, Maryland. The manuscript was included in the conference proceedings and we would now like to make the reprint available to the wider public: Please click here for the PDF file. Abstract: Based on a critical analysis of the experimental coercive properties, general considerations on the reversal mechanisms in RFeB magnets are recalled. By plotting together the experimental parameters obtained in various magnets, common features of the reversal processes are demonstrated. Modeling provides an almost quantitative description of coercivity in these materials and permits connecting the defect characteristic properties to reversal mechanisms. ...

December 12, 2014 · 1 min · Simon

“Battenberg” structured magnets, new paper published in APL

Our new, cake-themed paper on nanostructured permanent magnets has now been published in Applied Physics Letters. In the paper we present results from micromagnetic simulations that assess the performance of multi-phase nanostructured permanent magnets, whose cross-section resemble that of a Battenberg cake. By including a super-hard outer shell we are able to counteract the effects of thermal fluctuations and surface defects, both of which are detrimental to the performance of such permanent magnets. Such magnets are important for the motors in electric vehicles and for the generators in wind turbines, and these machines usually operate at elevated temperatures. ...

November 10, 2014 · 2 min · Simon

New paper; Thermally-activated coercivity in core-shell permanent magnets

Our new paper titled “Thermally-activated coercivity in core-shell permanent magnets” has been accepted for publication in Journal of Applied Physics. Click here to download the paper as a PDF file. In the paper we describe recent micromagnetics simulations on NdFeB grains that have undergone a dysprosium (Dy) grain boundary diffusion process (GBDP). The super hard (Dy,Nd)FeB shell that is formed during this process stabilizes the grains against thermal fluctuations that can be detrimental to the coercivity of the magnet in high-temperature situations. NdFeB permanent magnets are usually doped with Dy to increase their performance at high temperatures but the GBDP allows us to target the Dy at the most important locations i.e. the grain surface, thus reducing the overall required amount of Dy, which is expensive and in short supply. ...

October 23, 2014 · 2 min · Simon

European Researcher’s Night

Photos from our European Researcher’s Night can now be found at http://www.destinationfuture.eu/fotos

January 13, 2014 · 1 min · Simon